Toxno Substance Profile
Evidence-based data. We have more than 25,000 profiles on Toxno.
Use Search below to seek out more. Or browse the Exposure Routes; alternatively see our Lists that have more substances than notes in a Liszt virtuoso piano piece.
Substance Name

Acetamiprid
Identification Number: CASRN | 135410-20-7

  Substance Attributes


  • Metabolic Interference or Disruption

    Interferes with human metabolism. This can be a very serious thing. Some of these interference mechanics are well established. However, often long term effects and health consequences remain largely unknown. Additionally an emerging area of concern and one that is not currently studied, is the combined synergistic effects these metabolically disrupting chemicals have on human health.


    Metabolic interference happens when the substance produces highly reactive and often damaging intermediates during detoxification or when the substance binds to specific enzymes, important structural groups on molecules, receptors and membranes or targets DNA or mimics key nutrients.

  • Toxic to Bees

    Bees pollinate plants. No pollination no plants. No plants no food. We go hungry or starve.

These attributes are ONLY based on peer-reviewed evidence. See link to Data Sources below. Everyone benefits from knowing this stuff. Please Share.



  • CATEGORIES: Pesticide | Synthetic Toxin | PESTICIDE active ingredient | organic | insecticide | Pesticide or Plant Growth Regulator Approved in Australia | Pesticide approved in USA (California) | Pesticide approved or pending approval in EU | Highly Toxic and Dangerous to bees. Currently used in USA as a pesticide | NEONICOTINOID Pesticide | A Hazardous Substance that may be found in the Australian Workplace
  • SUBSTANCE LINEAGE: Organic Compounds | Organonitrogen Compounds | Amines | Aralkylamines | Aralkylamines
  • SYNONYMS: (e)-N-((6-chloro-3-Pyridinyl)methyl)-n'-cyano-N-methylethanimidamide | (e)-N-(6-chloro-3-Pyridyl)methyl-n'-cyano-N-methylacetamidine
  • DESCRIPTION: Acetamiprid is a neonicotinoid insecticide, which is a class of neuro-active insecticides modeled after nicotine. Nicotine was identified and used as an insecticide and rat poison as early as the 1600’s. Its effectiveness as an insecticide spurred a search for insecticidal compounds that have selectively less effect on mammals, which led to the discovery of neonicotinoids. Neonicotinoids, like nicotine, bind to nicotinic acetylcholine receptors of a cell. In mammals, nicotinic acetylcholine receptors are located in cells of both the central and peripheral nervous systems. In insects these receptors are limited to the CNS. While low to moderate activation of these receptors causes nervous stimulation, high levels overstimulate and block the receptors causing paralysis and death. Nicotinic acetylcholine receptors are activated by the neurotransmitter acetylcholine. Acetylcholine is broken down by acetylcholinesterase to terminate signals from these receptors. However, acetylcholinesterase cannot break down neonicotinoids and the binding is irreversible. Because most neonicotinoids bind much more strongly to insect neuron receptors than to mammal neuron receptors, these insecticides are selectively more toxic to insects than mammals. The low mammalian toxicity of neonicotinoids can be explained in large part by their lack of a charged nitrogen atom at physiological pH. The uncharged molecule can penetrate the insect blood–brain barrier, while the mammalian blood–brain barrier filters it. However, Some neonicotinoid breakdown products are toxic to humans, especially if they have become charged. Because of their low toxicity and other favorable features, neonicotinoids are among the most widely used insecticides in the world. Most neonicotinoids are water-soluble and break down slowly in the environment, so they can be taken up by the plant and provide protection from insects as the plant grows. Neonicotinoids are currently used on corn, canola, cotton, sorghum, sugar beets and soybeans. They are also used on the vast majority of fruit and vegetable crops, including apples, cherries, peaches, oranges, berries, leafy greens, tomatoes, and potatoes. The use of neonicotinoids has been linked in a range of studies to adverse ecological effects, including honey-bee colony collapse disorder (CCD) and loss of birds due to a reduction in insect populations. This has led to moratoriums and bans on their use in Europe.
  • COMMENTS: Residues of this pesticide are tested for on Australian Foods | Pesticide approved in Australia Manufacturer: Nippon Soda Products: Mospilan, Assail, ChipcoTristar

    From Safe Work Australia and the Hazardous Substances Information System (HSIS) in Australia:

    | | A Hazardous Substance that may be found in the Australian Workplace. Check with your employer or health and safety officer. Stay informed and become aware of the dangers that surround you. This chemical is included on the list of recognised hazardous chemicals from the Safe Work Australia - Hazardous Substances Information System (HSIS) that is based on the Globally Harmonised System of Classification and Labelling of Chemicals (GHS)

    Work Health and Safety (WHS) Regulations are the basis for hazardous chemicals regulations in Commonwealth, State and Territory jurisdictions in Australia. Under the model WHS Regulations, manufacturers and importers of substances, mixtures and articles supplied for use in workplaces are required to determine whether they are hazardous to health and safety before supply. The model WHS Regulations mandate that the hazards of a chemical as determined by the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) must be included in safety data sheets and on labels. There are transitional arrangements in place for moving to the GHS-based system.

    The GHS Hazardous Chemical Information List contains chemicals classified by an authoritative source (such as the European Commission or NICNAS) in accordance with the Globally Harmonized System of Classification and Labelling of Chemicals (the GHS). This list contains the vast majority of chemicals currently in HSIS. This list and its detail are regularly updated by Work Safe Australia. The model Work Health and Safety (WHS) Regulations require chemicals to be classified in accordance with the Globally Harmonised System of Classification and Labelling of Chemicals (GHS). However transitional arrangements allow use of classification information in HSIS derived from the Approved Criteria until the 31 December 2016.
  • toxin chemical structure pubchem
  • FORMULA: C10H11ClN4
  • DATA SOURCES: DATA SOURCES: T3DB | PubChem | Consolidated Pesticide Information Dataset (CPI) from the USA EPA | Compendium of Pesticide Common Names | APVMA | DPR | EU Pesticides | Rural Industries Research and Development Corporation; Honeybee pesticide poisoning: a risk management tool for Australian farmers and beekeepers 2012 | Beekeeping -Department of Entomology - PROTECTING HONEY BEES FROM PESTICIDES, Christian H. Krupke et al.; www.extension.purdue.edu | Safe Work Australia - Hazardous Substances Information System (HSIS)
  • LAST UPDATE: 26/04/2018

  Health Associations

Mostly focused on Health Implications of Long Term Exposure to this substance

  • SYMPTOMS:
  • POSSIBLE HEALTH CONSEQUENCES: | Organic nitriles are converted into cyanide ions through the action of cytochrome P450 enzymes in the liver. Cyanide is rapidly absorbed and distributed throughout the body. Cyanide is mainly metabolized into thiocyanate by either rhodanese or 3-mercaptopyruvate sulfur transferase. Cyanide metabolites are excreted in the urine. (L96)
  • ACTION OF TOXIN: Organic nitriles decompose into cyanide ions both in vivo and in vitro. Consequently the primary mechanism of toxicity for organic nitriles is their production of toxic cyanide ions or hydrogen cyanide. Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected. Cyanide is also known produce some of its toxic effects by binding to catalase, glutathione peroxidase, methemoglobin, hydroxocobalamin, phosphatase, tyrosinase, ascorbic acid oxidase, xanthine oxidase, succinic dehydrogenase, and Cu/Zn superoxide dismutase. Cyanide binds to the ferric ion of methemoglobin to form inactive cyanmethemoglobin. (L97) |
  • TOXIN SITES OF ACTION IN CELL: "Cytoplasm", "Extracellular", "Tubulin"
  • Additional Exposure Routes: This is a man-made compound that is used as a pesticide.

 Search all of Toxno

Or browse our mind blowing but terrifying Lists.

  Exposure Routes

These are the Exposure Routes we have so far for this substance. There are almost certainly more. We update this section regularly. The number of chemicals with 2 or more nastiness attributes in an exposure route is shown in orange. They grey badge shows the total amount of chemicals within the exposure route.


  Stay Informed

Chemicals released in consumer products and the environment are constantly changing. Regulations change. Exposure Routes change. People speak up and nasties are removed while often others are introduced.

By signing up you will periodically receive updates of potentially life changing information. Both for yourself and your family.

We take security and privacy very seriously and you can unsubscribe at any time.


cats at toxno

"Yeh. We were surprised too"