Toxno Substance Profile
Evidence-based data. We have more than 25,000 profiles on Toxno.
Use Search below to seek out more. Or browse the Exposure Routes; alternatively see our Lists that have more substances than notes in a Liszt virtuoso piano piece.
Substance Name

Lead arsenate
Identification Number: CASRN | 7784-40-9

  Substance Attributes


  • Carcinogenic Properties

    Accumulating evidence points to cancer potential. Exercise caution with this substance, explore your exposure routes and consider complete avoidance. See further details under Toxins.

  • Neurotoxic Properties

    Negative impact on brain and nervous system.

  • Reproductive Effects

    Interferes with fertility

  • Birth/Developmental

    Known to effect development of fetus.

  • Metabolic Interference or Disruption

    Interferes with human metabolism. This can be a very serious thing. Some of these interference mechanics are well established. However, often long term effects and health consequences remain largely unknown. Additionally an emerging area of concern and one that is not currently studied, is the combined synergistic effects these metabolically disrupting chemicals have on human health.


    Metabolic interference happens when the substance produces highly reactive and often damaging intermediates during detoxification or when the substance binds to specific enzymes, important structural groups on molecules, receptors and membranes or targets DNA or mimics key nutrients.

  • Exposure Produces Health Symptoms

    Symptoms maybe short term or long term depending on the exposure duration and intensity and effects areas like Cardiovascular, Gastrointestinal, Cognition, Fatigue. A substance with this attribute may cause an allergic skin reaction, serious eye irritation, allergy or asthma symptoms or breathing difficulties if inhaled.

  • Serious Acute Effects

    This is a serious nasty substance. Effects are Acute (seen immediately). Substances in this category may be FATAL or acutely toxic if inhaled, skin contact or swallowed. See further details.

  • Toxic to specific organs

    Can damage liver, kidney, lungs, heart or gut. Ironically liver, kidneys and gut are the main detoxifications systems.

  • Toxic to Wildlife

    May kill plants, fish, birds or other animals and insects or may be very toxic to aquatic life with long lasting effects. This then effects delicate environmental ecology and food supply in ways we don't fully understand yet.

These attributes are ONLY based on peer-reviewed evidence. See link to Data Sources below. Everyone benefits from knowing this stuff. Please Share.



  • CATEGORIES: Pesticide | Pollutant | Airborne Pollutant | Synthetic Toxin | PESTICIDE active ingredient | inorganic | insecticide | plant growth regulator | A Hazardous Substance that may be found in the Australian Workplace
  • SUBSTANCE LINEAGE: Inorganic Compounds | Mixed Metal/Non-metal Compounds | Post-transition Metal Oxoanionic Compounds | Post-transition Metal Arsenates | Post-transition Metal Arsenates
  • SYNONYMS: Acid lead arsenate | Acid lead orthoarsenate | Arsenate of lead | Arsinette | Dibasic lead arsenate | Diplumbic hydrogen arsenate | Gypsine | Lead acid arsenate | Lead arsenate | basic | Lead arsenic acid | Lead hydrogen arsenate | Lead hydrogenarsenate | Lead(2+) monohydrogen arsenate | Lead(II) arsenate | Ortho L40 dust | Plumbous arsenate | Schultenite | Standard lead arsenate
  • DESCRIPTION: Lead arsenate is a chemical compound of lead and arsenic. It is derived from arsenic acid and originally used as an insecticide against the codling moth and potato beetle. Today its use is officially banned. Arsenic is a chemical element that has the symbol As and atomic number 33. It is a poisonous metalloid that has many allotropic forms: yellow (molecular non-metallic) and several black and grey forms (metalloids) are a few that are seen. Three metalloidal forms of arsenic with different crystal structures are found free in nature (the minerals arsenopyrite and the much rarer arsenolamprite and pararsenolamprite), but it is more commonly found as a compound with other elements. (T3, L383)
  • COMMENTS:

    From Safe Work Australia and the Hazardous Substances Information System (HSIS) in Australia:

    May cause cancer. May damage the unborn child. Suspected of damaging fertility. Toxic if inhaled. Toxic if swallowed. May cause damage to organs through prolonged or repeated exposure . Very toxic to aquatic life with long lasting effects | Chronic Health Hazard Environmental Hazard Acutely Toxic | A Hazardous Substance that may be found in the Australian Workplace. Check with your employer or health and safety officer. Stay informed and become aware of the dangers that surround you. This chemical is included on the list of recognised hazardous chemicals from the Safe Work Australia - Hazardous Substances Information System (HSIS) that is based on the Globally Harmonised System of Classification and Labelling of Chemicals (GHS)

    Work Health and Safety (WHS) Regulations are the basis for hazardous chemicals regulations in Commonwealth, State and Territory jurisdictions in Australia. Under the model WHS Regulations, manufacturers and importers of substances, mixtures and articles supplied for use in workplaces are required to determine whether they are hazardous to health and safety before supply. The model WHS Regulations mandate that the hazards of a chemical as determined by the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) must be included in safety data sheets and on labels. There are transitional arrangements in place for moving to the GHS-based system.

    The GHS Hazardous Chemical Information List contains chemicals classified by an authoritative source (such as the European Commission or NICNAS) in accordance with the Globally Harmonized System of Classification and Labelling of Chemicals (the GHS). This list contains the vast majority of chemicals currently in HSIS. This list and its detail are regularly updated by Work Safe Australia. The model Work Health and Safety (WHS) Regulations require chemicals to be classified in accordance with the Globally Harmonised System of Classification and Labelling of Chemicals (GHS). However transitional arrangements allow use of classification information in HSIS derived from the Approved Criteria until the 31 December 2016.
  • toxin chemical structure pubchem
  • FORMULA: AsHO4Pb
  • DATA SOURCES: DATA SOURCES: T3DB | PubChem | Consolidated Pesticide Information Dataset (CPI) from the USA EPA | Compendium of Pesticide Common Names | Safe Work Australia - Hazardous Substances Information System (HSIS)
  • LAST UPDATE: 28/04/2018

  Health Associations

Mostly focused on Health Implications of Long Term Exposure to this substance

  • SYMPTOMS: Exposure to lower levels of arsenic can cause nausea and vomiting, decreased production of red and white blood cells, abnormal heart rhythm, damage to blood vessels, and a sensation of burn (T1).
  • POSSIBLE HEALTH CONSEQUENCES: Arsenic poisoning can lead to death from multi-system organ failure, probably from necrotic cell death, not apoptosis. Arsenic is also a known carcinogen, esepcially in skin, liver, bladder and lung cancers. Lead is a neurotoxin and has been known to cause brain damage and reduced cognitive capacity, especially in children. Lead exposure can result in nephropathy, as well as blood disorders such as high blood pressure and anemia. Lead also exhibits reproductive toxicity and can results in miscarriages and reduced sperm production. (T1, L20, L21) | Lead and arsenic are absorbed following inhalation, oral, and dermal exposure. Arsenic is then distributed throughout the body, where it is reduced into arsenite if necessary, then methylated into monomethylarsenic (MMA) and dimethylarsenic acid (DMA) by arsenite methyltransferase. Arsenic and its metabolites are primarily excreted in the urine. Arsenic is known to induce the metal-binding protein metallothionein, which decreases the toxic effects of arsenic and other metals by binding them and making them biologically inactive, as well as acting as an antioxidant. Lead is distributed mainly to the bones and red blood cells. In the blood lead may be found bound to serum albumin or the metal-binding protein metallothionein. Organic lead is metabolized by cytochrome P-450 enzymes, whereas inorganic lead forms complexes with delta-aminolevulinic acid dehydratase. Lead is excreted mainly in the urine and faeces. (L136, L20)
  • ACTION OF TOXIN: Arsenic and its metabolites disrupt ATP production through several mechanisms. At the level of the citric acid cycle, arsenic inhibits pyruvate dehydrogenase and by competing with phosphate it uncouples oxidative phosphorylation, thus inhibiting energy-linked reduction of NAD+, mitochondrial respiration, and ATP synthesis. Hydrogen peroxide production is also increased, which might form reactive oxygen species and oxidative stress. Arsenic's carginogenicity is influenced by the arsenical binding of tubulin, which results in aneuploidy, polyploidy and mitotic arrests. The binding of other arsenic protein targets may also cause altered DNA repair enzyme activity, altered DNA methylation patterns and cell proliferation. Lead mimics other biologically important metals, such as zinc, calcium, and iron, competing as cofactors for many of their respective enzymatic reactions. For example, lead has been shown to competitively inhibit calcium's binding of calmodulin, interferring with neurotransmitter release. It exhibits similar competitive inhibition at the NMDA receptor and protein kinase C, which impairs brain microvascular formation and function, as well as alters the blood-brain barrier. Lead also affects the nervous system by impairing regulation of dopamine synthesis and blocking evoked release of acetylcholine. However, it's main mechanism of action occurs by inhibiting delta-aminolevulinic acid dehydratase, an enzyme vital in the biosynthesis of heme, which is a necesssary cofactor of hemoglobin. (T1, T4, A17, A20, A22, L136) | Arsenic binds to actin. (A16)
  • TOXIN SITES OF ACTION IN CELL: "Cytoplasm", "Extracellular"
  • Additional Exposure Routes: Lead arsenate is used as an insecticide. (L383)

 Search all of Toxno

Or browse our mind blowing but terrifying Lists.

  Exposure Routes

These are the Exposure Routes we have so far for this substance. There are almost certainly more. We update this section regularly. The number of chemicals with 2 or more nastiness attributes in an exposure route is shown in orange. They grey badge shows the total amount of chemicals within the exposure route.


  Stay Informed

Chemicals released in consumer products and the environment are constantly changing. Regulations change. Exposure Routes change. People speak up and nasties are removed while often others are introduced.

By signing up you will periodically receive updates of potentially life changing information. Both for yourself and your family.

We take security and privacy very seriously and you can unsubscribe at any time.


cats at toxno

"Yeh. We were surprised too"