Toxno Substance Profile
Evidence-based data. We have more than 25,000 profiles on Toxno.
Use Search below to seek out more. Or browse the Exposure Routes; alternatively see our Lists that have more substances than notes in a Liszt virtuoso piano piece.
Substance Name

Identification Number: CASRN | 7440-62-2

  Substance Attributes

  • Metabolic Interference or Disruption

    Interferes with human metabolism. This can be a very serious thing. Some of these interference mechanics are well established. However, often long term effects and health consequences remain largely unknown. Additionally an emerging area of concern and one that is not currently studied, is the combined synergistic effects these metabolically disrupting chemicals have on human health.

    Metabolic interference happens when the substance produces highly reactive and often damaging intermediates during detoxification or when the substance binds to specific enzymes, important structural groups on molecules, receptors and membranes or targets DNA or mimics key nutrients.

  • Exposure Produces Health Symptoms

    Symptoms maybe short term or long term depending on the exposure duration and intensity and effects areas like Cardiovascular, Gastrointestinal, Cognition, Fatigue. A substance with this attribute may cause an allergic skin reaction, serious eye irritation, allergy or asthma symptoms or breathing difficulties if inhaled.

These attributes are ONLY based on peer-reviewed evidence. See link to Data Sources below. Everyone benefits from knowing this stuff. Please Share.

  • CATEGORIES: Chemicals detected in flowback and produced water - collectively referred to as - hydraulic fracturing wastewater | Food Toxin | Natural Toxin
  • SUBSTANCE LINEAGE: Inorganic Compounds | Homogeneous Metal Compounds | Homogeneous Transition Metal Compounds | | Homogeneous Transition Metal Compounds
  • SYNONYMS: V | Vanadate | Vanadium ion | Vanadium(II) | Vanadium(III) | Vanadium(IV) | Vanadium(V)
  • DESCRIPTION: Has been used in CSG, Hydraulic Fracturing Operations (Fracking) as - Unknown | Vanadium is a steel-grey, corrosion-resistant metal, which exists in oxidation states ranging from -1 to +5. Metallic vanadium does not occur in nature, and the most common valence states are +3, +4, and +5. The pentavalent form (VO3-) predominates in extracellular body fluids whereas the quadrivalent form (VO+2) is the most common intracellular form. Because of its hardness and its ability to form alloys, vanadium (i.e., ferrovanadium) is a common component of hard steel alloys used in machines and tools. Although most foods contain low concentrations of vanadium (< 1 ng/g), food is the major source of exposure to vanadium for the general population. High air concentrations of vanadium occur in the occupation setting during boiler-cleaning operations as a result of the presence of vanadium oxides in the dust. The lungs absorb soluble vanadium compounds (V2O5) well, but the absorption of vanadium salts from the gastrointestinal tract is poor. The excretion of vanadium by the kidneys is rapid with a biological half-life of 20-40 hours in the urine. Physiologically, it exists as an ion in the body. Vanadium is probably an essential trace element, but a vanadium-deficiency disease has not been identified in humans. The estimated daily intake of the US population ranges from 10-60 micrograms V. Vanadyl sulfate is a common supplement used to enhance weight training in athletes at doses up to 60 mg/d. In vitro and animal studies indicate that vanadate and other vanadium compounds increase glucose transport activity and improve glucose metabolism. In general, the toxicity of vanadium compounds is low. Pentavalent compounds are the most toxic and the toxicity of vanadium compounds usually increases as the valence increases. Most of the toxic effects of vanadium compounds result from local irritation of the eyes and upper respiratory tract rather than systemic toxicity. The only clearly documented effect of exposure to vanadium dust is upper respiratory tract irritation characterized by rhinitis, wheezing, nasal hemorrhage, conjunctivitis, cough, sore throat, and chest pain. Case studies have described the onset of asthma after heavy exposure to vanadium compounds, but clinical studies to date have not detected an increased prevalence of asthma in workers exposed to vanadium. Vanadium is a trace element present in practically all cells in plants and animals. It exerts interesting actions in living systems. At pharmacological doses, vanadium compounds display relevant biological actions such as mimicking insulin and growth factors as well as having osteogenic activity. Some vanadium compounds also show antitumoral properties. The importance of vanadium in bone arises from the studies developed to establish the essentiality of this element in animals and humans. Bone tissue, where the element seems to play an important role, accumulates great amounts of vanadium. Among several metals, vanadium has emerged as an extremely potent agent with insulin-like properties. These insulin-like properties have been demonstrated in isolated cells, tissues, different animal models of type I and type II diabetes as well as a limited number of human subjects. Vanadium treatment has been found to improve abnormalities of carbohydrate and lipid metabolism and of gene expression in rodent models of diabetes. In isolated cells, it enhances glucose transport, glycogen and lipid synthesis, and inhibits gluconeogenesis and lipolysis. The molecular mechanism responsible for the insulin-like effects of vanadium compounds have been shown to involve the activation of several key components of insulin-signaling pathways that include the mitogen-activated-protein kinases (MAPKs) extracellular signal-regulated kinase 1/2 (ERK1/2) and p38MAPK, and phosphatidylinositol 3-kinase (PI3-K)/protein kinase B (PKB). (A7727, A7728, A7729)
  • toxin chemical structure pubchem
  • LAST UPDATE: 28/04/2018

  Health Associations

Mostly focused on Health Implications of Long Term Exposure to this substance

  • SYMPTOMS: Inhalation of vanadium causes lung irritation, coughing, wheezing, chest pain, runny nose, and a sore throat. (L837)
  • POSSIBLE HEALTH CONSEQUENCES: Breathing high levels of vanadium affects the lungs, throat, and eyes. Ingestion of vanadium may cause kidney and liver damage, birth defects, or death. (L837) | Vanadium is absorbed mainly via inhalation, though small amounts can be absorbed through the skin and gastrointestional tract. It is rapidly distributed in the plasma, mainly to the kidney, liver, lungs, heart, bone, where it tends to accumulate. With the help of cytochrome P-450 enzymes, it can interconvert between its two oxidation states, vanadyl (V+4) and vanadate (V+5). Both states of vanadium can reversibly bind to transferrin protein in the blood and then be taken up into erythrocytes. Vanadium is excreted mainly in the urine. (L837)
  • ACTION OF TOXIN: Vanadium damages alveolar macrophages by decreasing the macrophage membrane integrity, thus impairing the cell's phagocytotic ability and viability. The pentavalent form of vanadium, vanadate, is a potent inhibitor of the Ca+-ATPase and Na+,K+-ATPase of plasma membranes, which decreases intracellular ATP concentration. Vanadium is also believed to induce the production of reactive oxygen species. This may damage DNA and also cause oxidative stress, which can damage the reproductive system. Vanadium also inhibits protein tyrosine phosphatases, producing insulin-like effects. (L837, A247, A248, A249, A250, A251) | The pentavalent form of vanadium, vanadate, is a potent inhibitor of the Ca+-ATPase and Na+,K+-ATPase of plasma membranes, which decreases intracellular ATP concentration. (L837, A250)
  • TOXIN SITES OF ACTION IN CELL: "Cytoplasm", "Extracellular"
  • Additional Exposure Routes: Vanadium is mainly used to produce specialty steel alloys such as high speed tool steels. It is also mixed with iron to make important parts for aircraft engines, and small amounts are used in making rubber, plastics, ceramics, and other chemicals. (L837, L838)

 Search all of Toxno

Or browse our mind blowing but terrifying Lists.

  Exposure Routes

These are the Exposure Routes we have so far for this substance. There are almost certainly more. We update this section regularly. The number of chemicals with 2 or more nastiness attributes in an exposure route is shown in orange. They grey badge shows the total amount of chemicals within the exposure route.

  Stay Informed

Chemicals released in consumer products and the environment are constantly changing. Regulations change. Exposure Routes change. People speak up and nasties are removed while often others are introduced.

By signing up you will periodically receive updates of potentially life changing information. Both for yourself and your family.

We take security and privacy very seriously and you can unsubscribe at any time.

cats at toxno

"Yeh. We were surprised too"