Toxno Substance Profile
Evidence-based data. We have more than 25,000 profiles on Toxno.
Use Search below to seek out more. Or browse the Exposure Routes; alternatively see our Lists that have more substances than notes in a Liszt virtuoso piano piece.
Substance Name

Benzyl acetate
Identification Number: CASRN | 140-11-4

  Substance Attributes


  • Carcinogenic Properties

    Accumulating evidence points to cancer potential. Exercise caution with this substance, explore your exposure routes and consider complete avoidance. See further details under Toxins.

  • Neurotoxic Properties

    Negative impact on brain and nervous system.

  • Metabolic Interference or Disruption

    Interferes with human metabolism. This can be a very serious thing. Some of these interference mechanics are well established. However, often long term effects and health consequences remain largely unknown. Additionally an emerging area of concern and one that is not currently studied, is the combined synergistic effects these metabolically disrupting chemicals have on human health.


    Metabolic interference happens when the substance produces highly reactive and often damaging intermediates during detoxification or when the substance binds to specific enzymes, important structural groups on molecules, receptors and membranes or targets DNA or mimics key nutrients.

  • Exposure Produces Health Symptoms

    Symptoms maybe short term or long term depending on the exposure duration and intensity and effects areas like Cardiovascular, Gastrointestinal, Cognition, Fatigue. A substance with this attribute may cause an allergic skin reaction, serious eye irritation, allergy or asthma symptoms or breathing difficulties if inhaled.

These attributes are ONLY based on peer-reviewed evidence. See link to Data Sources below. Everyone benefits from knowing this stuff. Please Share.



  • CATEGORIES: Household Toxin | Plant Toxin | Food Toxin | Natural Toxin | Odor | This Chemical is an Odorant and has a smell like - fresh, boiled vegetable | EAFUS (Everything Added to Food in the United States) | Inert Pesticide Ingredient USA - Non Food Use Only | Inert Pesticide Ingredient USA - FRAGRANCE ( Generally Not used on Food)
  • SUBSTANCE LINEAGE: Organic Compounds | Benzenoids | Benzene and Substituted Derivatives | Benzyloxycarbonyls | Benzyloxycarbonyls
  • SYNONYMS: (acetoxymethyl)benzene | Acetato de bencilo | Acetic acid benzyl ester | Acetic acid phenylmethyl ester | Acetic acid | benzyl ester | Acetic acid | phenylmethyl ester | alpha-Acetoxytoluene | Benzyl acetate + glycine combination | Benzyl acetic acid | Benzyl ester of acetic acid | Benzyl ethanoate | Benzylester kyseliny octove | FEMA 2135 | Nchem.167-comp5 | Phenylmethyl acetate | Phenylmethyl ethanoate | Plastolin I
  • DESCRIPTION: Benzyl acetate is found in alcoholic beverages. Benzyl acetate occurs in jasmine, apple, cherry, guava fruit and peel, wine grape, white wine, tea, plum, cooked rice, Bourbon vanilla, naranjila fruit (Solanum quitoense), Chinese cabbage and quince. Benzyl acetate is a flavouring agent Benzyl acetate is an organic compound with the molecular formula C9H10O2. It is the ester formed by condensation of benzyl alcohol and acetic acid. It is one of many compounds that is attractive to males of various species of orchid bees, who apparently gather the chemical to synthesize pheromones; it is commonly used as bait to attract and collect these bees for study. Benzyl acetate belongs to the family of Benzyloxycarbonyls. These are organic compounds containing a carbonyl group substituted with a benzyloxyl group.
  • COMMENTS:
  • toxin chemical structure pubchem
  • FORMULA: C9H10O2
  • DATA SOURCES: DATA SOURCES: ARTICLE 4 | CPDB | T3DB | PubChem | IARC | Flavornet | EAFUS | EPA USA - Pesticide Inerts
  • LAST UPDATE: 28/04/2018

  Health Associations

Mostly focused on Health Implications of Long Term Exposure to this substance

  • SYMPTOMS: Vomiting, drowiness, diarrhea, convulsions and burning sensation may result from ingestion or inhalation. Moreover, inhalation may cause laboured breathing and sore throat. Redness of the eyes, dry skin, depending of the contact surface (L1225).
  • POSSIBLE HEALTH CONSEQUENCES: Acute exposure to cholinesterase inhibitors can cause a cholinergic crisis characterized by severe nausea/vomiting, salivation, sweating, bradycardia, hypotension, collapse, and convulsions. Increasing muscle weakness is a possibility and may result in death if respiratory muscles are involved. Accumulation of ACh at motor nerves causes overstimulation of nicotinic expression at the neuromuscular junction. When this occurs symptoms such as muscle weakness, fatigue, muscle cramps, fasciculation, and paralysis can be seen. When there is an accumulation of ACh at autonomic ganglia this causes overstimulation of nicotinic expression in the sympathetic system. Symptoms associated with this are hypertension, and hypoglycemia. Overstimulation of nicotinic acetylcholine receptors in the central nervous system, due to accumulation of ACh, results in anxiety, headache, convulsions, ataxia, depression of respiration and circulation, tremor, general weakness, and potentially coma. When there is expression of muscarinic overstimulation due to excess acetylcholine at muscarinic acetylcholine receptors symptoms of visual disturbances, tightness in chest, wheezing due to bronchoconstriction, increased bronchial secretions, increased salivation, lacrimation, sweating, peristalsis, and urination can occur. Certain reproductive effects in fertility, growth, and development for males and females have been linked specifically to organophosphate pesticide exposure. Most of the research on reproductive effects has been conducted on farmers working with pesticides and insecticdes in rural areas. In females menstrual cycle disturbances, longer pregnancies, spontaneous abortions, stillbirths, and some developmental effects in offspring have been linked to organophosphate pesticide exposure. Prenatal exposure has been linked to impaired fetal growth and development. Neurotoxic effects have also been linked to poisoning with OP pesticides causing four neurotoxic effects in humans: cholinergic syndrome, intermediate syndrome, organophosphate-induced delayed polyneuropathy (OPIDP), and chronic organophosphate-induced neuropsychiatric disorder (COPIND). These syndromes result after acute and chronic exposure to OP pesticides. | Paraoxonase (PON1) is a key enzyme in the metabolism of organophosphates. PON1 can inactivate some organophosphates through hydrolysis. PON1 hydrolyzes the active metabolites in several organophosphates insecticides as well as, nerve agents such as soman, sarin, and VX. The presence of PON1 polymorphisms causes there to be different enzyme levels and catalytic efficiency of this esterase, which in turn suggests that different individuals may be more susceptible to the toxic effect of OP exposure.
  • ACTION OF TOXIN: Benzyl acetate is a cholinesterase or acetylcholinesterase (AChE) inhibitor. A cholinesterase inhibitor (or 'anticholinesterase') suppresses the action of acetylcholinesterase. Because of its essential function, chemicals that interfere with the action of acetylcholinesterase are potent neurotoxins, causing excessive salivation and eye-watering in low doses, followed by muscle spasms and ultimately death. Nerve gases and many substances used in insecticides have been shown to act by binding a serine in the active site of acetylcholine esterase, inhibiting the enzyme completely. Acetylcholine esterase breaks down the neurotransmitter acetylcholine, which is released at nerve and muscle junctions, in order to allow the muscle or organ to relax. The result of acetylcholine esterase inhibition is that acetylcholine builds up and continues to act so that any nerve impulses are continually transmitted and muscle contractions do not stop. Among the most common acetylcholinesterase inhibitors are phosphorus-based compounds, which are designed to bind to the active site of the enzyme. The structural requirements are a phosphorus atom bearing two lipophilic groups, a leaving group (such as a halide or thiocyanate), and a terminal oxygen. | Benzyl acetate binds to acetylcholinesterase.
  • TOXIN SITES OF ACTION IN CELL: "Cytoplasm", "Extracellular"
  • Additional Exposure Routes: It is used widely in perfumery and cosmetics for its aroma and in flavorings to impart apple and pear flavors (L1222).

 Search all of Toxno

Or browse our mind blowing but terrifying Lists.

  Exposure Routes

These are the Exposure Routes we have so far for this substance. There are almost certainly more. We update this section regularly. The number of chemicals with 2 or more nastiness attributes in an exposure route is shown in orange. They grey badge shows the total amount of chemicals within the exposure route.


  Stay Informed

Chemicals released in consumer products and the environment are constantly changing. Regulations change. Exposure Routes change. People speak up and nasties are removed while often others are introduced.

By signing up you will periodically receive updates of potentially life changing information. Both for yourself and your family.

We take security and privacy very seriously and you can unsubscribe at any time.


cats at toxno

"Yeh. We were surprised too"