Toxin Profiles

Substance Name

Acetone
Identification Number: CASRN | 67-64-1

  Nastiness Attributes


  • Reproductive Effects

    Interferes with fertility

  • Birth/Developmental

    Known to effect development of fetus.

  • Metabolic Interference or Disruption

    Interferes with human metabolism. This can be a very serious thing. Some of these interference mechanics are well established. However, often long term effects and health consequences remain largely unknown. Additionally an emerging area of concern and one that is not currently studied, is the combined synergistic effects these metabolically disrupting chemicals have on human health.

    Metabolic interference happens when the substance produces highly reactive and often damaging intermediates during detoxification or when the substance binds to specific enzymes, important structural groups on molecules, receptors and membranes or targets DNA or mimics key nutrients.

  • Exposure Produces Health Symptoms

    Symptoms maybe short term or long term depending on the exposure duration and intensity and effects areas like Cardiovascular, Gastrointestinal, Cognition, Fatigue. A substance with this attribute may cause an allergic skin reaction, serious eye irritation, allergy or asthma symptoms or breathing difficulties if inhaled.

  • Toxic to specific organs

    Can damage liver, kidney, lungs, heart or gut. Ironically liver, kidneys and gut are the main detoxifications systems.

  • Soluble in Water

    This substance easily dissolves in water. As such it can be easily transported via waterways. Not really a nastiness attribute, but this feature helps rapidly spread other nastiness attributes this substance may have.

  • Volatile - Evaporates easily

    This substance easily enters the air we breath. Not really a nastiness attribute, but this feature helps rapidly spread other nastiness attributes this substance may have.


  • CATEGORIES: Chemical Found in Air near CSG Operations | Pit Chemicals | Chemicals detected in flowback and produced water - collectively referred to as - hydraulic fracturing wastewater | Household Toxin | Industrial/Workplace Toxin | Food Toxin | Natural Toxin | Food Flavoring | EAFUS (Everything Added to Food in the United States) | Inert Pesticide Ingredient USA - Food Use Permitted | A Hazardous Substance that may be found in the Australian Workplace
  • SUBSTANCE LINEAGE: Organic Compounds | Organooxygen Compounds | Carbonyl Compounds | | Ketones
  • SYNONYMS: 2-Ketopropane | 2-Propanone | b-Ketopropane | beta-Ketopropane | Dimethyl formaldehyde | Dimethyl ketone | Dimethylformaldehyde | Methyl ketone | Propanone | Pyroacetic ether | Pyroacetic spirit
  • DESCRIPTION: Has been used in CSG, Hydraulic Fracturing Operations (Fracking) as - Unknown | Acetone is one of the ketone bodies produced during ketoacidosis. Acetone is not regarded as a waste product of metabolism. However, its physiological role in biochemical machinery is not clear. A model for the role of acetone metabolism is presented that orders the events occurring in acetonemia in sequence: in diabetic ketosis or starvation, ketone body production (b-hydroxy-butyrate, acetoacetate) provides fuel for vital organs (heart, brain .) raising the chance of survival of the metabolic catastrophe. However, when ketone body production exceeds the degrading capacity, the accumulating acetoacetic acid presents a new challenge to the pH regulatory system. Acetone production and its further degradation to C3 fragments fulfill two purposes: the maintenance of pH buffering capacity and provision of fuel for peripheral tissues. Since ketosis develops under serious metabolic circumstances, all the mechanisms that balance or moderate the effects of ketosis enhance the chance for survival. From this point of view, the theory that transportable C3 fragments can serve as additional nutrients is a novel view of acetone metabolism which introduces a new approach to the study of acetone degradation, especially in understanding its physiological function and the interrelationship between liver and peripheral tissues. (A7724). Acetone is typically derived from acetoacetate through the action of microbial acetoacetate decarboxylases found in gut microflora. In chemistry, acetone is the simplest representative of the ketones. Acetone is a colorless, mobile, flammable liquid readily soluble in water, ethanol, ether, etc., and itself serves as an important solvent. Acetone is an irritant and inhalation may lead to hepatotoxic effects (causing liver damage).
  • COMMENTS: This Chemical is in the category of VOC and is found in Air near CSG Operations From Safe Work Australia and the Hazardous Substances Information System (HSIS) in Australia: Highly flammable liquid and vapour. Causes serious eye irritation. May cause drowsiness or dizziness. | General Health Hazard | A Hazardous Substance that may be found in the Australian Workplace. Check with your employer or health and safety officer. Stay informed and become aware of the dangers that surround you. This chemical is included on the list of recognised hazardous chemicals from the Safe Work Australia - Hazardous Substances Information System (HSIS) that is based on the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) Work Health and Safety (WHS) Regulations are the basis for hazardous chemicals regulations in Commonwealth, State and Territory jurisdictions in Australia. Under the model WHS Regulations, manufacturers and importers of substances, mixtures and articles supplied for use in workplaces are required to determine whether they are hazardous to health and safety before supply. The model WHS Regulations mandate that the hazards of a chemical as determined by the Globally Harmonised System of Classification and Labelling of Chemicals (GHS) must be included in safety data sheets and on labels. There are transitional arrangements in place for moving to the GHS-based system.The GHS Hazardous Chemical Information List contains chemicals classified by an authoritative source (such as the European Commission or NICNAS) in accordance with the Globally Harmonized System of Classification and Labelling of Chemicals (the GHS). This list contains the vast majority of chemicals currently in HSIS. This list and its detail are regularly updated by Work Safe Australia. The model Work Health and Safety (WHS) Regulations require chemicals to be classified in accordance with the Globally Harmonised System of Classification and Labelling of Chemicals (GHS). However transitional arrangements allow use of classification information in HSIS derived from the Approved Criteria until the 31 December 2016.
  • toxin chemical structure pubchem
  • FORMULA: C3H6O
  • DATA SOURCES: DATA SOURCES: ARTICLE 4 | T3DB | PubChem | TEDX | FracFocus | EPA in USA | US HOUSE OF REPRESENTATIVES | Article-Colborn-Air | Flavornet | EAFUS | EPA USA - Pesticide Inerts | Safe Work Australia - Hazardous Substances Information System (HSIS)
  • LAST UPDATE: 21/04/2015

  Health Associations

Mostly focused on Health Implications of Long Term Exposure to this substance

  • SYMPTOMS: Sore throat, cough, confusion, headache, dizziness, drowsiness, and unconsciousness are some signs observed after acetone poisoning. Moreover, ingestion of the product can cause nausea and vomiting. Redness, pain, blurred vision as well as corneal damage can result from eye exposure. A dry skin can be the result of dermal contact. Irritation of the nose, throat, lungs, and eyes can also occur depending on the route of exposure. (L937)
  • POSSIBLE HEALTH CONSEQUENCES: Pulmonary congestion and edema can follow inhalation of acetone, which irritates the mucosa. Gastrointestinal hemorrhage caused by repeated vomiting of blood has been reported. Neurobehavioral effects, indicative of narcosis, sedation, respiratory depression, ataxia, paresthesia and renal lesions can also result from acetone poisoning. (N004, A578) | The metabolic fate of acetone is independent of route of administration and involves three separate gluconeogenic pathways, with ultimate incorporation of carbon atoms into glucose and other products and substrates of intermediary metabolism with generation of carbon dioxide. The primary (major) pathway involves hepatic metabolism of acetone to acetol and hepatic metabolism of acetol to methylglyoxal, while two secondary (minor) pathways are partially extrahepatic, involving the extrahepatic reduction of acetol to L-1,2-propanediol. Subsequent conversion of acetol to methylglyoxal in microsomes is catalyzed by acetol monooxygenase (also called acetol hydroxylase), an activity also associated with cytochrome P-450IIE1, and also requires oxygen and NADPH. Methylglyoxal can then be converted to D-glucose by an unidentified pathway, and/or possibly by catalysis by glyoxalase I and II and glutathione to D-lactate, which is converted to D-glucose. Some of exogenous acetone is unmetabolized and is excreted primarily in the expired air with little acetone excreted in urine. (N004)
  • ACTION OF TOXIN: Since acetone is highly water soluble, it is readily taken up by the blood and widely distributed to body tissues. Acetone may interfere with the composition of the membranes, altering their permeability to ions. Systemically, acetone is moderately toxic to the liver and produces hematological effects. The renal toxicity may be due to the metabolite, formate, which is known to be nephrotoxic and is excreted by the kidneys. One of the major effects of acetone is the potentiation of the toxicity of other chemicals. Pretreatment with acetone has been shown to potentiate the hepatotoxicity and nephrotoxicity of carbon tetrachloride and chloroform by inducing particular forms of cytochrome P-450, especially cytochrome P-45OIIE1, and associated enzyme activities. (N004) |
  • TOXIN SITES OF ACTION IN CELL: "Cytoplasm", "Extracellular", "Mitochondria"
  • Additional Exposure Routes: Most acetone produced is used to make other chemicals that make plastics, fibers, and drugs. Acetone is also used to dissolve other substances. Exposure may occur from breathing air, drinking water and eating food with acetone, and through dermal and eye contact. (N004)

  Search our Toxin Profiles

Loading

  Exposure Routes

These are the Exposure Routes we have so far for this substance. There are almost certainly more. We update this section regularly. The number of chemicals with 2 or more nastiness attributes in an exposure route is shown in orange. They grey badge shows the total amount of chemicals within the exposure route.


  Stay Informed

Chemicals released in consumer products and the environment are constantly changing. Regulations change. Exposure Routes change. People speak up and nasties are removed while often others are introduced.

By signing up you will periodically receive updates of potentially life changing information. Both for yourself and your family.

We take security and privacy very seriously and you can unsubscribe at any time.


cats at toxno

"Yeh. We were surprised too"



Your Feedback makes Toxno better for everyone